4 research outputs found

    Contributions to modelling of internet traffic by fractal renewal processes.

    Get PDF
    The principle of parsimonious modelling of Internet traffic states that a minimal number of descriptors should be used for its characterization. Until early 1990s, the conventional Markovian models for voice traffic had been considered suitable and parsimonious for data traffic as well. Later with the discovery of strong correlations and increased burstiness in Internet traffic, various self-similar count models have been proposed. But, in fact, such models are strictly mono-fractal and applicable at coarse time scales, whereas Internet traffic modelling is about modelling traffic at fine and coarse time scales; modelling traffic which can be mono and multi-fractal; modelling traffic at interarrival time and count levels; modelling traffic at access and core tiers; and modelling all the three structural components of Internet traffic, that is, packets, flows and sessions. The philosophy of this thesis can be described as: “the renewal of renewal theory in Internet traffic modelling”. Renewal theory has a great potential in modelling statistical characteristics of Internet traffic belonging to individual users, access and core networks. In this thesis, we develop an Internet traffic modelling framework based on fractal renewal processes, that is, renewal processes with underlying distribution of interarrival times being heavy-tailed. The proposed renewal framework covers packets, flows and sessions as structural components of Internet traffic and is applicable for modelling the traffic at fine and coarse time scales. The properties of superposition of renewal processes can be used to model traffic in higher tiers of the Internet hierarchy. As the framework is based on renewal processes, therefore, Internet traffic can be modelled at both interarrival times and count levels

    Contributions to modelling of internet traffic by fractal renewal processes.

    Get PDF
    The principle of parsimonious modelling of Internet traffic states that a minimal number of descriptors should be used for its characterization. Until early 1990s, the conventional Markovian models for voice traffic had been considered suitable and parsimonious for data traffic as well. Later with the discovery of strong correlations and increased burstiness in Internet traffic, various self-similar count models have been proposed. But, in fact, such models are strictly mono-fractal and applicable at coarse time scales, whereas Internet traffic modelling is about modelling traffic at fine and coarse time scales; modelling traffic which can be mono and multi-fractal; modelling traffic at interarrival time and count levels; modelling traffic at access and core tiers; and modelling all the three structural components of Internet traffic, that is, packets, flows and sessions. The philosophy of this thesis can be described as: “the renewal of renewal theory in Internet traffic modelling”. Renewal theory has a great potential in modelling statistical characteristics of Internet traffic belonging to individual users, access and core networks. In this thesis, we develop an Internet traffic modelling framework based on fractal renewal processes, that is, renewal processes with underlying distribution of interarrival times being heavy-tailed. The proposed renewal framework covers packets, flows and sessions as structural components of Internet traffic and is applicable for modelling the traffic at fine and coarse time scales. The properties of superposition of renewal processes can be used to model traffic in higher tiers of the Internet hierarchy. As the framework is based on renewal processes, therefore, Internet traffic can be modelled at both interarrival times and count levels

    Energy-Efficient Data Center Network Infrastructure With Network Switch Refresh Model

    No full text
    Data centers and their underline transmissions are required to guarantee critical services in a 24/7/365 framework. The extensive energy consumption of these data centers and their transmission networks impose a threat to globally available scarce energy resources. Furthermore, addressing performance and energy requirements trade-offs is also challenging. This article has been specifically focused to assess the inside-energy-view of typical data center networks and assess how network infrastructure replacements or “refresh” can lead to a better energy-efficient data center network (DCN) design without compromising performance or service level requirements. Server refresh techniques are found in the literature. However, considering network infrastructure refresh to attain energy efficiency is the first of its kind. A model has been proposed in this article that works on algorithms to recommend network switch replacements. The algorithms perform parametric analysis for replacement. The analysis considers parameters impacting the performance and energy consumption of the switches. In addition to technical parameters, the proposed model has also evaluated the cost impacts of the replacement. The replacement is only recommended if it is energy efficient and performance effective and validated when replacement is also cost-effective. The proposed model has been evaluated through two replacement options, one with the same manufacturer and the other with a different manufacturer. Replacement with two different options has been proposed to evaluate the impact of various manufacturers in designing a better energy-efficient data center meeting all service level requirements and performance guarantees. The results obtained from the proposed reflect the attainment of the desired objectives

    Energy Storage for Energy Security and Reliability through Renewable Energy Technologies: A New Paradigm for Energy Policies in Turkey and Pakistan

    No full text
    Forecasting the microeconomics of electricity will turn into a challenging process when electricity is produced through renewable energy technologies (RET). These technologies are mainly sunlight-based photovoltaic (PV), wind power, and tidal resources, which vigorously rely upon ecological conditions. For a reliable and livable energy supply to the electricity grid from renewable means, electrical energy storage technologies can play an important role while considering the weather effects in order to provide immaculate, safe, and continuous energy throughout the generation period. Energy storage technologies (ESTs) charge themselves during the low power demand period and discharge when the demand of electricity increases in such a way that they act as a catalyst to provide energy boost to the power grid. In this paper, we presented and discussed the renewable ESTs for each type with respect to their operational mechanism. In this regard, the renewable energy scenarios of Pakistan and Turkey are first discussed in detail by analyzing the actual potential of each renewable energy resource in both the countries. Then, policy for the EST utilization for both the countries is recommended in order to secure sustainable and reliable energy provision
    corecore